Structural Engineering is one of the most challenging engineering that one can experience. Undoubtedly building codes have made things much more easier but that is not the limit of this science, but in fact if goes even further.

If you think about structural engineering and your first class of structural mechanics, you always wondered about behavior of materials under different loading, how does bending moment affect a structure and why is shear always so critical. You get pretty confused and always looked for a good source to read about some "intuitive structural engineering". I have suffered through such problems and so I started writing down blogs.

Generally all the blogs about structural engineering talk about design methodology and how building codes define certain things and stuff like that. Well, that is all empirical. But that is now what we will do over here. On this platform we will understand the intuitive portion of structural engineering and discuss at the very basic level. If your basics are clear then everything starts making sense.

Would you like me to impress you with one basic example? So here it is, a basic concept of "Why development length is required in concrete structures?"

Let me give you the most simple example to explain the concept the development. Take your first finger and grab it in the palm of your other hand. Now pull the finger applying as much force as you can. At a certain limit your finger will slip and contact between finder and palm will break. But suppose if your finger is too long or the grip between the finger and the palm is immense such that if you pull your finger then the only way to get your other hand free is breaking up your finger. That is the base concept of development length.

The bond between steel and concrete is somewhat similar. We cannot have a continuous bar of steel throughout the structure. There are always connections, joints and splices. If we do not provide development length, then at the location of these critical areas the structure will fail easily. But if we provide sufficient amount of length to give a continuity to the strength of the structure then the strength will be similar everywhere.

This is how we are going to discuss structural engineering over here. Taking very basic cases and understanding and applying them to a structure without breaking the laws of physics. Once we have covered all these basic concepts, we will discuss about building codes and clauses, nonlinear response history analysis, different software to use in structural engineering, artificial intelligence and neural networks and programming in structural engineering.

This is why the name of our blog is "Structural Madness". It clearly depicts the craziness towards the field. I do not consider this as my work, but instead as my hobby and passion.

So let's get started with our blog, shall we?